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Abstract

The two commonly-used performance data types in the super-computing commu-

nity, statistics and event traces, are discussed and compared. Statistical data are

much more compact but lack the probative power event traces offer.  Event traces,

on the other hand, are unbounded and can easily fill up the entire file system during

program execution.  In this paper, we propose an innovative methodology for per-

formance data gathering and representation that offers a middle ground. Two basic

ideas are employed: the use of averages to replace recording data for each instance

and ÒformulaeÓ to represent sequences associated with communication and control

flow. The user can trade off tracing overhead, trace data size with data quality in-

crementally. In other words, the user will be able to limit the amount of trace data

collected and, at the same time, carry out some of the analysis event traces offer

using space-time views. With the help of a few simple examples, we illustrate the

use of these techniques in performance tuning and compare the quality of the traces

we collected with event traces. We found that the trace files thus obtained are, in-

deed, small, bounded and predictable before program execution, and that the quality

of the space-time views generated from these statistical data are excellent. Further-

more, experimental results showed that the formulae proposed were able to capture

all the sequences associated with 11 of the 15 applications tested. The performance

of the formulae can be incrementally improved by allocating more memory at run-

time to learn longer sequences.

1. Introduction

Computing today increasingly depends on the effective utilization of multiprocessors.  Systems

currently available range from those with tightly-coupled processors to those with a network of

workstations.  Innovation in hardware technologies continuously reduce the communication time

between processing nodes as well as access latencies across the memory hierarchy to support

computing in this new environment. Unfortunately, the software infrastructure (e.g. program-

ming languages, compilers, operating systems, and performance monitoring and prediction tools)
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available today still has not kept pace with the state-of-the-art multiprocessing hardware [Pan91,

SMS95].  In particular, the lack of useful, accurate facilities for measuring and analyzing program

performance is particularly distressing, since performance is the raison dÕ�tre for parallelism.

1.1 Performance Analysis Systems

Traditional performance-analysis systems (e.g. gprof) that generate textual information have

proven quite effective for sequential programs.  Metrics based on the distribution of elapsed time

across the program can systematically direct the user towards time consuming regions of code

where performance should be improved.  Unfortunately, such simple measures are insufficient

for parallel programs and may even be misleading [HIM91].  This problem arises primarily be-

cause aggregate values do not necessarily capture the dynamic interactions between various proc-

esses (and processing nodes) involved in the computation.  In order to fully understand the

performance of a particular program on a particular machine, a performance tool must capture

and analyze dynamic execution characteristics.  

Visualization has been used extensively to represent simulation results for many complex physi-

cal systems.  In the past five years, the application of visualization technologies to manage the

vast amount of performance data collected in multiprocessors has also been proposed.  Many

tools supporting performance visualization are available today, either in the public domain (e.g.

AIMS [YSM95], Pablo [RO*91], Paradyn [MC*95], and ParaGraph [HE91]) or as part of a

multiprocessorÕs system software (e.g. CXTRACE on ConvexÕs SPP-1, ParAid on IntelÕs Para-

gon, MPP Apprentice on CRIÕs T3D, PRISM on TMCÕs CM5, and PV on IBMÕs SP2).  Typi-

cally, performance data are displayed post-mortem.  These displays provide valuable feed-back

about usersÕ choice of parallel algorithm, strategies for load balancing and data distribution, as

well as how the application will scale with increasing numbers of processing nodes and problem

sizes.  A good survey of some state-of-the-art research efforts can be found in [PMY95, SK90].

1.2 Statistics vs. Event Traces: A Comparison

Broadly speaking, there are two kinds of performance data: statistics and event traces.  Statistics

are concerned with counts and duration: e.g. how many times a procedure has been called and, on

average, how long it took to complete.  Event traces, on the other hand, record the exact sequence

(and in most cases, the actual time) of actions that took place during program execution.  Fur-

thermore, when the clocks across processing nodes are synchronized, event traces can help pro-

vide a global picture of what took place (e.g. how long a message took to reach node b from node

a).  As of today, all the trace tools that animate parallel program execution (e.g. using space-time

diagrams) require synchronized event traces from multiple nodes.
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One might suggest that event traces should always be gathered since they contain much more in-

formation.  Unfortunately, event traces in general are large and the size of the trace file is not pre-

dictable before program execution.  Furthermore, the collection process itself is expensive and

requires a lot of resources.  The most intrusive activity to support event traces involves the need

to allocate memory buffers dynamically in order to save the performance data and flushing to

disk when these buffers are full.  In fact, two commercial vendors (CRIÕs MPP-Apprentice and

TMCÕs PRISM) have opted not to support event traces, possibly to avoid excessive perturbation

on observed program behavior.  In both cases, the user locates bottlenecks by studying the

amount of time a procedure or source line consumes and the activity that took place during this

time.  The reasons so many other vendors (e.g. CXTRACE on ConvexÕs SPP-1, ParAid on IntelÕs

Paragon, and PV on IBMÕs SP2) are still supporting event tracing can probably be explained by

the differences of the two representations as discussed below.
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a) The fact that 
nodec is “behind” 
nodea and nodeb is 
only visible on the 
space-time view

b) The fact that 
communication 
overlaps computa-
tion is only visible on 
the space-time view

Space-time view Histogram

Procedure A
idle time
Procedure B Space-time view Histogram

nodea nodeb nodec

Figure 1.  Comparing space-time views vs. histograms in their abilities to capture pro-

gram behavior in 2 cases: a) computation/communication overlap, and b) load-imbalance.

Figure 1 compares the abilities of two visual representations supporting parallel program behav-

ior analysis, histograms vs. space-time views. Two interesting parallel program behavior patterns

involve synchronized behavior across nodes and communication-computation overlap.  In the

space-time views shown on the left of Figure 1, each horizontal bar indicates activity that took

place at a node during a given time interval.  ÒWhite spacesÓ indicate idleness, possibly waiting

for the arrival of a message.  Messages are indicated as lines drawn from the sender node to the

receiver node.  Each column of the histograms on the right plots accumulated time for various ac-
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tivities for the corresponding node.  Basically, nodea, nodeb, and nodec were all executing Proce-

dure A at the beginning of the time interval being monitored.  In Figure 1a, nodes exchanged mes-

sages in a cyclic pattern.  The fact that nodec was ÒbehindÓ nodea and nodeb is only visible on the

space-time view.  In Figure 1b however, after Procedure A terminated, nodeb sent messages to

nodea and nodec before they all entered Procedure B.  Although the user may suspect the exis-

tence of load imbalance based on the histogram, the fact that communication overlaps computa-

tion is only visible on the space-time view.

Table 1 gives a more detailed comparison between statistics and event traces in three areas: col-

lection requirements, trace file size and analyses these traces support.  Two observations need to

be highlighted:

1. Event traces are relatively larger and unbounded.  This can be a severe problem in practice.

2. Event traces support a much richer variety of analyses critical towards understanding the

behavior of parallel programs.

It is, therefore, not surprising that a lot of tools available today are still based on event traces.

1.3 Trace File Reduction Attempts

As mentioned above, event traces contain much richer information, but unfortunately the size of

a trace file is unbounded.  Attempts have been made to reduce trace file size. In the Automated

Instrumentation and Monitoring System (AIMS) [YSM95] that was developed at NASA Ames

Research Center, two techniques for trace file reduction had been considered:

1.  Merging trace records that always occur in pairs:

a) Message (e.g. send, receive, broadcast) blocking and unblocking.

b) Code-block (e.g. procedure, loop) entry and exit.

2.  Using binary encoding for trace records.

In the first technique, a new trace record type was defined and used in place of two individual

records to eliminate some duplicate fields (e.g. the message type, size, and, tag). Our studies indi-

cated that trace record merging resulted in a reduction of 27% of the number of trace records,

which translated to an average reduction of 38% in actual trace file length in ASCII. Binary trace

encoding is the second technique to reduce trace file size. Researchers working on Pablo [RO*91]

reported 40% savings with the use of binary (vs. ASCII) representation.  Our own calculations

also indicated similar savings (from 40% to 50%).

In summary, the trace file would only shrink by a factor of 4 even if both techniques were ap-

plied simultaneously.  This was insufficient because applications of interests will scale up an or-

der of magnitude in problem size as well as number of nodes.  Furthermore, no matter how

compact the representation may become, the generation of event traces leaves the trace file length
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unbound.  A fundamental re-thinking of the process of performance instrumentation, monitoring

and trace representation is required in order to limit trace file length while preserving the rich con-

tent available in event traces.

Statistics Event Traces
Trace reading system clock Ã Ã
collection synchronizing clocks across nodes Ã
overhead allocate memory buffer Ã Ã

flushing to disk during execution Ã
processing requirements simple integer

arithmetic
memory management
required

Trace file size predictable unbounded

Trace classification of % time spent on vari-
ous activities

Ã Ã

Analysis code block (such as procedures, loops,
and user-defined blocks) duration

average values distinguishes each
instance of invocation

Supported alignment of code blocks, parallelism
profiles, critical paths

Ã

load imbalance due to the fact that
identical code blocks take different
times to execute across nodes

may suggest
possibility

obvious and conclu-
sive identification

load imbalance due to the fact that re-
ceiver is blocked before sender is
ready, messages received out of order,
identify communication/computation
overlap, message transmission time

Ã

Table 1.  Statistics vs. event traces Ñ comparison of trace file contents

1.4 Outline of Paper

This paper proposes an innovative approach for instrumentation, monitoring and trace represen-

tation to support a rich variety of performance analyses and, at the same time, putting stringent

constraint on trace file size.  Sections 2 and 3 describe how a space-time view can be constructed

based on a fixed sized trace file.  Sections 4 and 5 report preliminary experimental results, inviting

the reader to consider whether these constructed space-time views do indeed reflect performance

problems correctly and support the kind of analyses mentioned in Table 1.
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2. Constructing Space-Time Views based on Statistics

2.1 Understanding the Components of a Space-Time View

Figure 2 shows a space-time view obtained from a detailed trace of a parallel matrix multiplication

program (or, matmul). The program was written in FORTRAN, using the MPI message passing

library, and executed on four nodes of an IBM/SP2.  Figure 2(a) shows the complete execution

history.  There are three basic features: color bars, Òwhite spacesÓ and lines:

1. Each color bar indicates the start and end times for a particular code segment.

2. Each segment of Òwhite spaceÓ indicates the start and end times of idling/blocking.

3. Each line segment indicates the origin, destination, and, send/receive times of a message.

“Main”

Send:mpi_bcast
If-ELSE

Send:mpi_send

Loop “a”

1 iteration

(a) Complete Trace

(b) Point “1” (c) Point “2”

If-THEN

Recv:mpi_recv

Figure 2.  Analysis of the space-time diagram (a) complete execution trace of matmul;

(b) zoomed-in view at point 1; (c) zoomed-in view at point 2

 When Figure 2 is further analyzed with reference to the source code, a few more observations

can be made:

• Matmul is an spmd (single program multiple data) parallel application, all nodes share the
same initialization sequence (labeled “Main” in Figure 2).  

• Node 0 behaves differently from the rest of the nodes because the code contains condition-
als of the form “if (node_id == 0) then ... ; else ...”.  Two features that
distinguished the behavior of Node 0 from the rest of the nodes are clearly distinguishable:

a) After initialization, node 0 executed Loop ÒaÓ a few times while the rest waited.

b) The ÒthenÓ part of one conditional was executed at node 0 (Figure 2(a)) whereas the

ÒelseÓ portions of some other conditionals were executed at the rest of the nodes

(Figure 2(c)).
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• The duration of each iteration in
a loop (e.g., Loop “a”) differs.

• Different nodes idle for different
times awaiting the arrival of
messages (e.g. as shown in
Figure 2(a)).  Idling could be
caused by message sending (e.g.
a broadcast as shown in Figure
2(b) or a point-to-point send as
shown in Figure 2(c)).

2.2 Refining Our Requirements

Based on these observations, the re-

quirements for constructing space-time

views can be stated in terms of re-

quirements to construct its three major

components: the color bars, white

spaces and message lines as summa-

rized in Table 2.  For example, re-

quirement-1 in Table 2 implies that the

control flow (for example, the branch sequence of a conditional) has to be monitored and repro-

duced in the right order.  The requirements for making trace file length fixed and predictable be-

fore program execution can be formalized as shown in Table 3.  It is not difficult to see how these

two sets of requirements cannot be met simultaneously.  A simple example involves a program in

which process 0 sends messages to ran-

domly picked processes for a random

number of times.  The list of message

receivers is unboundedly long and arbi-

trary.  The data required for construct-

ing a space-time view can only be

captured by an unbounded event list.

Fortunately, most real programs do not

behave in a completely random fashion.

This leaves room for the possibility of

                                                
1 For example, if node 1 sends two messages to node 2 in rapid succession; having the message ID or type will help

determine whether the messages are received out of order.

1. Drawing color bars:
a)  identify the boundaries of all sequential code blocks

of the program (these include, procedures and
loops, if-then-elseÕs, and targets for gotoÕs etc.),

b)  record the duration of each code block, and
c)  reconstruct the sequence in which these code blocks

occur.
2. Drawing white spaces:

a)  identify all blocking constructs (e.g. sends, re-
ceives, broadcasts, barriers, waits etc.),

b)  record the duration of each idling instance, and
c)  record the sequence in which these white spaces oc-

cur with respect to the color bars.
3. Drawing message lines:

a)  record the receiver for each send construct and the
sender for each receive construct,

b)  record the ID or type for each message so that
sendÕs and receiveÕs can be matched correctly1, and

c)  reconstruct the sequence in which these sendÕs and
receiveÕs occur.

Table 2.  Requirements for performance data con-

tent to construct a space-time view

1. The length of the trace file should be independent of
the input data (e.g. no. of iterations, problem size).

2.  Trace file size may scale with the number of nodes
on which the execution takes place.  We feel that the
number of storage devices could easily scale nicely
with the number of nodes.

3.  Trace file size may vary with different programs but
should be independent of input data.

4.  Performance data needs to be gathered for the entire
program, not limited to a portion of the execution at
the beginning.

Table 3.  Defining ÒfixedÓ trace file length
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using patterns to capture program behavior.

2.3 Collecting Data for a Space-Time View

Two basic ideas are employed to help limit the length of the trace file before program execution:

the use of ÒaveragesÓ to replace recording data for each instance, and ÒformulaeÓ to represent in-

finitely long sequences of values.  The first idea is relatively straightforward: statistical informa-

tion about total time spent in each code block and the number of times each code block2 executes

is gathered.  The space-time view constructed based on this data will only reflect Òaverage dura-

tionÓ for each code block (e.g. the total time for executing a loop can be correctly represented

while it will not be possible to pinpoint exactly how long a particular iteration actually took).

1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 ...
receivers of messages  
from node 0

 in which send constructs occur in the 
source code

1 1 1 1 1 1...

2 2 2 3 3 3...

1 2 3 1 2 3...

send-#1

send-#2

send-#3

loop-begin

loop-end
...

...

...

...

attributing message receivers according to the order

node-0
node-1
node-2
node-3

messages 
sent from 
node 0 in a 
space time 
diagram

a)

b)

c)

Figure 3.  Analyzing message patterns generated by a parallel program

The second idea is best illustrated by considering message lines on the space-time view (e.g., as

shown in Figure 3a): in order for a line to be drawn, a unique sender and a unique receiver must be

associated with each message.  For all the sendÕs along each time line to be correctly connected to

other time lines, the sequence of message receivers must be correctly reproduced (e.g., as shown

in Figure 3b).  Now this seemingly complex sequence of receiver nodes originates from a sequence

of send constructs (e.g., as shown in Figure 3c (left)) that was executed.  When the sequence of

receivers are broken down according to the actual source code constructs (as shown in Figure 3c

                                                
2 A code block would include loops, procedures, sends/receives, as well as any Òbasic blockÓ defined in the classical

sequential sense.
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(right)), simpler patterns usually emerge3.  This concept of associating sequences with individual

source code construct can actually be applied to six categories of constructs:

i. the sequence of receivers for each sending construct,

ii. the sequence of senders for each receiving construct,

iii. the sequence of message tags for each send construct,

iv. the sequence of message tags for each receive construct,

v. the way in which branches are taken at conditional statements, and

vi. the number of times a loop executes when the loop is encountered.  

A methodology for learning the behavior of each construct as well as a suitable representation for

these patterns has to be chosen.  Although there is no guarantee that any of these sequences can

be captured by a finite ÒformulaeÓ (c.f.  behavior that are designed to be random), it remains the

subject of further experimentation as to what percentage of program constructs are, in fact, ame-

nable to this kind of analysis.

Four basic categories of formulae are proposed for learning and reproducing sequences associated

with program constructs (see Table 4):

1. IDENTITY Ñ repetition of one value.

2. GENERAL Ñ non-repeating values.

3. ITERATION Ñ iterative series with constant difference between individual terms.

4. CYCLE Ñ after some sort of prologue, the rest of the series can be represented as a repeti-

tion of a fixed number of values.  

d a d b b b c c d d d d b

a a a a a a a a a a a

(a (a+i) (a+2i) ... (a+ki))n

ap cq (ar bs ct du ev)n

ar bs ct du ev

identity

general

cycle

iteration

Formula Type                 Formula                                 Example

an

a a a a b c c d d d d e

1 3 5 7 9 1 3 5 7 9

id

ge

it

cy

Table 4.  Four simple formulae used in this experiment

At run-time, the performance monitor determines whether a sequence can be captured with a

formula, and if so, which one.  The user allocates a fixed amount of memory for this purpose be-

                                                
3 Program segments resemble components of a complex machinery built for a specific purpose.  Although the behav-

ior of the entire machine may appear complex, its components tend to exhibit relatively simple and predictable be-
havior patterns.
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fore program execution.  Of course, longer repeating sequences could be learned if more memory

were available.  Nevertheless, it should also be noted that are many possible formula types and

some series cannot be captured by a fixed-length formula.  

3. The AIMS Implementation

3.1 Basics of AIMS

The Automated Instrumentation and Monitoring System, or AIMS [YSM95], has been developed

at NASA Ames Research Center, under the High Performance Computing and Communications

Program.  AIMS consists of a suite of software tools for measurement and analysis of parallel

program performance.  An instrumentor first parses the applicationÕs source code to insert in-

strumentation at selected points.  Upon execution of the instrumented program (linked with a

machine-specific monitor library), a stream of events is collected into a trace file.  Runtime moni-

toring perturbs program execution and can significantly alter the recorded communication charac-

teristics and computation times.  Such intrusion is removed by an intrusion-compensation

module, using appropriate communication-cost models for the underlying architecture [YL93].

The compensated trace file thus yielded can then be input to various post-processing tools that

analyze the performance characteristics of a program.

AIMS provides two post-processing tools for performance visualization: the View Kernel (VK) to

display the dynamics of program execution using a space-time view, and the Performance Index

and Statistics Kernel (Xisk) to view statistical performance data and highlight the most time con-

suming procedures and data structure interactions that may need to be tuned.

In the next few sections we proceed to discuss how AIMS is actually modified to collect statisti-

cal data, learn and record formulae for sequences, and reconstruct a space-time view for perform-

ance analysis.

3.2 Instrumentation

Instrumentation is essentially a process of source-to-source program transformation.  AIMSÕs

instrumentor, xinstrument, first constructs a parse tree of the source code.  Parse-tree nodes

that correspond to instrumentable program constructs are identified and appropriately, modified

or transformed.  The instrumented source-code is then obtained by ÒunparsingÓ the transformed

parse tree.  In order to gather sufficient data to reconstruct the complete dynamic behavior of the

program, xinstrument has to identify every sequential block in the program. These usually

consist of Òstraight-line codeÓ between two instrumentable constructs.  The example shown in

Figure 4 uses a simple conditional to illustrate how the instrumentor and the monitor cooperate

to capture control flow.  
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...
call foo()
 ... 
if (n .eq. 99) 
  then
  a = n*5+1;...
endif
  ... 
call goo()
...

Clock A

Clock B

Clock B’

Clock C

Block #1

Block #3

Block #2

Block #4

“If” succeeds “If” fails Clock A

Clock C

Source program 

Figure 4.  Defining sequential blocks and arranging clocks around a conditional

Xinstrument will insert two extra4 clock-read statements inside the ÒthenÓ portion of the con-

ditional.  Xinstrument also takes note of the target to which gotoÕs take place in its assign-

ment of sequential blocks.  New instrumentation has to be added to the applicationÕs source code

in order to capture or learn four elements of the application previously ignored:

1. Counts and duration: For each sequential block, information about how many times it was

encountered and the total elapsed time for the code block is recorded.

2. Message patterns: At each send (and receive) construct, xinstrument inserts a learning

module that attempts to capture the sequence of message tags (or IDÕs) as well as the cor-

responding receivers (and senders).

3. Branch sequences: A learning module is inserted around each conditional to capture the

branch sequence. Now suppose that the conditional (shown in Figure 4) was executed 10

times and only 2 of which succeeded.  The monitor will observe 2 instances of clock se-

quence: A-B-BÕ-C and 8 instances of A-C (thus generating enough data to deduce which two

out of those ten branches were successful).

4. Loop patterns: A learning module is inserted around each loop to capture the pattern of it-

eration sequence.  The number of iterations a loop executes each time it is encountered can

be different.

The data thus collected captures the control-flow of the entire program, thus enabling reconstruc-

tion of run-time behavior.

                                                
4 Clocks A and C can be obtained for free because procedure calls are already instrumented and the times of fooÕs

termination and gooÕs commencement can be deduced.
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3.3 Monitoring

AIMSÕs performance monitoring library, the monitor, defines a set of routines that xinstru-

ment inserts into the application.  They are responsible for initializing instrumentation and,

gathering and storing performance data (see [YSM95]). Because only statistical data and fixed-

length formulae are to be stored with this approach, the memory required for storing performance

data for the entire execution at each node is fixed and predictable. All performance data is written

to disk after program execution terminates.

The largest augmentation to the monitor involves the building of learning modules capable of de-

ducing formulae to capture repeating sequences.  A learning module must also perform efficiently

to minimize run-time overhead and, at the same time, be able to recognize and encode a wide vari-

ety of sequences.  As shown in Figure 5, a learning module basically operates as a finite state

machine in which each ÒstateÓ corresponds to a formula type that potentially describes the se-

quence.

These tests are 
“cheaper” and occur 
much more frequently

State Transition Diagram
id ge it cy ?initial value

same no.?

Nope! try 
this...

cannot be 
learned

always
this the 
next no. 
expected

this the 
next no. 
expected

this the 
next no. 
expected

Nope! try 
this...

Nope! try 
this...

Figure 5.  A learning module is structured as a finite state machine

At first, the module assumes the simplest and most frequent case5.  As the next value in the se-

quence appears, the learning module attempts to confirm the correctness of the current proposed

formula.  When a discrepancy arises, the next possible formula is tested (in other words, a Òstate

transitionÓ occurs). When all (four) formulae fail to account for the newly observed value, the

learning module concludes that the pattern cannot be learnt. The learning module is designed

such that the process involved in comparing the next value against that predicted by the current

formula is much cheaper than state transitions (i.e. testing a completely new formula) as they oc-

cur much less frequently. Therefore, the user may improve the predictive power of the module

by appending more complex formulae (or in other words, adding more ÒstatesÓ) to this engine.

At the end of execution, all the formulae and statistics are written out to disk and ready for post-

processing.

                                                
5 Recall from section 2.3, four simple formulae have been identified (c.f.  Table 4).  Based on preliminary analysis

of a few parallel applications (to be described in section The Experiments), the most common case is ÒIDÓ (which
may represent a conditional in which the branch is always taken or a send construct sending to one recipient every
time it is encountered).
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3.4 Post-processing (Event Trace Reconstruction)

In order to construct a space-time view from the performance data (in the form of statistics and

formulae) gathered using this approach, time-ordered events need to be generated. A simple algo-

rithm has been implemented to accomplish this process:

Proc. A

Seq. Code.

Main

Send

Receive

Loop

If
Then

Else

Seq. Code.

Invoked 
11 times

Branch always 
taken at node 0)

Always 
executed 
8 times

always received from 
node 0 with msg. tag 20

send to nodes 1 to 
8 in sequence,...)Pattern 

at node 0

duration: average...  
max...  min... first: ...

a b
c

d

e

f
g

Figure 6.  Annotated source tree ready for event-trace reconstruction

1. BUILD PARSE TREE based on lexical information about the source code collected by xin-

strument.

2. ANNOTATE PARSE TREE using performance data.  As shown in Figure 6, the annotation

process involves the association of performance statistics and formulae to instrumented

constructs and sequential code blocks.  These associations allow the reconstruction of

elapsed times, branch sequences, iteration counts, and message receiver/sender/tag se-

quences in the next two steps.

3. RECONSTRUCT CONTROL FLOW via annotated parse tree traversal. Program execution is

simulated as the parse tree is traversed node-by-node in lexical order.  At specific points

where control flow information was determined dynamically, e.g. the way a branch took or

the number of times a loop executed, the stored formulae associated at that node is used

(c.f. at points c and d of  Figure 6).

4. GENERATE INTERVAL DURATION at each node. The amount of time spent at each node can

be approximated by the statistical performance data associated at each parse-tree node.

5. CHECK CONSISTENCY OF EVENT TIMES ACROSS NODES when communication occurs. This

process of ensuring messages are sent before they are received also facilitates periodical

cross-checking and adjustment of elapsed times at each processing node, thus resulting in a

more consistent picture of the entire execution (cf. with Figure 6, at point f for processing

node 0 and point g for other nodes).

6. GENERATE TIMED EVENTS.  The events are then collected as a time-ordered trace file for VK

to build a space-time view.
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4. The Experiments

4.1 Quality of Statistical Space-time Diagram

The methodology described here was applied to a few test programs and the NAS parallel

benchmarks (NPB) [BB*91]. To illustrate the quality of the space-time diagram generated from

statistical data, three examples, matmul (Figure 7) and the NAS parallel benchmarks SP (Figure

8) and BT (Figure 9), were compared with actual event traces.  It can be seen that the overall

characteristics of event traces is correctly represented by the space-time view derived from sta-

tistics: 1) the control flow of program executions was correctly recorded, 2) critical points (such

as message passing, global blocking) were illustrated, 3) the total execution time was very close.

The exception of the durations of individual iterations of a loop in matmul (c.f. Figure 2) is due

to that averaged durations were used in the construction of the space-time views from statistics.

Figure 7.  Space-time view for matmul: from a) event traces, and b) statistics gathered

The total execution times of the six tested applications are summarized in Table 5. For a com-

parison, the corresponding values for uninstrumented and instrumented (i.e. event traces) are also

included in the table.  These values were taken from averages of three repeated runs for each ap-

plication on 4 nodes of an IBM SP2.  The overhead due to the instrumentation is reflected by 5

to 10% increase of execution time for the instrumented codes.  The execution times for the two

types of instrumentations (to produce event traces and statistical data) are very close. The

slightly longer time (< 5%) to produce statistical traces is due to the extra cost of instrumenting

control constructs, such as IF and LOOP statements, and the current implementation of the

learning module.
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Figure 8.  Space-time view for SP: a) from actual event traces, b) out of statistics gathered

Figure 9.  Space-time view for BT: a) from actual event traces, b) out of statistics gathered

Application Problem Size Uninstrumented Instrumented Stat.-Trace

exec. time overhead exec. time overhead

matmult 200×1000 0.24 sec. 0.26 sec. 8.3% 0.26 sec. 8.3%

BT 40 iters 12×12×12 0.89 sec. 0.94 sec. 5.6% 0.97 sec. 8.9%

SP 40 iters 12×12×12 0.43 sec. 0.47 sec. 9.3% 0.50 sec. 16.3%

LU 40 iters 12×12×12 0.53 sec. 0.64 sec. 20.3% 0.70 sec. 32.1%

MG 40 iters 32×32×32 1.12 sec. 1.52 sec. 35.7% 1.64 sec. 46.4%

CG 15 iters 1400 1.09 sec. 1.12 sec. 2.8% 1.13 sec. 3.7%

Table 5. Execution times (on IBM SP2) of uninstrumented vs. instrumented codes.
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4.2 Detailed Comparison of Trace Files

In order to describe the quality of the space-time views generated from statistical data quantita-

tively, a block-by-block comparison of trace records in the generated statistical trace (simplified

as Stat) and the actual event trace (simplified as Event) has been performed. Two quantities are

compared (as illustrated in Figure 10): the relative position of an event time, p = tÕi - ti, and the

time change of an execution block, d = bÕi - bi, where bi = ti+1 - ti and bÕi = tÕi+1 - tÕi. The first

quantity, p, quantitatively compares how accurate two space-time views are in absolute terms,

while the second quantity, d, indicates how close (or similar) two space-time views look in rela-

tive terms. Furthermore, discrepancies introduced in earlier parts of the execution impacts the

quantity p but not d in later parts of the trace.  These quantities are plotted as histograms for all

the trace records for a given application and distributions, as illustrated in the right of Figure 10,

are generated for a given bin-size. The spread of a distribution can be characterized by the stan-

dard deviation:

σ ρ σ= −( ) =∑ p p wi i

2
2 2, ln

where p  is the mean of the distribution, ρi  is the probability, and w is the width at the half

maximum (h) for a Gaussian distribution. The spread is a direct indication of the closeness of two

trace files. The comparison of block time (d) is more realistic since it removes the uncertainty due

to the program startup time and the progressive change due to different execution times.

w

h

b1 b2 b3

t1
b'1

t2 t3 t4
b'2 b'3

t'1 t'2 t'3 t'4

Figure 10 a) Block-by-block comparison of trace records,

b) Statistical (Gaussian) distribution with height h and width w.

Three types of comparisons (Event vs. Event, Stat vs. Stat, and Stat vs. Event) have been done for

six tested applications. The results for both position spread (p) and block spread (d) are summa-

rized in Table 6. The spread of Event-vs.-Event indicates the natural spread of repeated program

executions. This value is used as a reference for the other two types. A quality factor  is defined

as the ratio of a given spread and the reference spread and is also included in the table. A factor of

one indicates that the fluctuation of time differences is within the natural spread, as illustrated by
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the comparison of Stat vs. Stat. It is not surprising that the position spread of Stat trace vs. Event

trace is much larger (quality factor is much smaller) than the corresponding block spread, as dis-

cussed in the previous paragraph. These differences can be seen from the distributions of p and d

for MATMULT and BT shown in Figure 11.
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Figure 11. Position and block spreads of trace record times for

matmult (a and b) and BT (c and d).

The spread (or width) of Stat vs. Stat is slightly less than that of Event vs. Event: due to averaged

information presented in statistical traces. The quality factor for Stat vs. Event is about 10%
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worse (from the block spread) than that for Event vs. Event. This is a reflection of the use of av-

eraged execution times for program constructs in the process of reconstructing the space-time

view. This averaged representation would be distinguished in a real event trace, for example, exe-

cution time of a function call would be different with different input parameters, which could not

be represented in the statistical trace.

Position Spread (w) Block Spread (w)

Application Event vs.
Event

Stat vs. Stat Stat vs.
Event

Event vs.
Event

Stat vs. Stat Stat vs.
Event

matmult 3.36 3.38 (0.99) 3.50 (0.96) 0.037 0.033 (1.11) 0.039 (0.95)

BT 3.48 3.36 (1.04) 15.1 (0.23) 0.039 0.038 (1.04) 0.047 (0.83)

SP 3.31 3.32 (1.00) 11.3 (0.29) 0.039 0.037 (1.06) 0.048 (0.81)

LU 3.29 3.29 (1.00) 5.00 (0.66) 0.035 0.034 (1.01) 0.037 (0.93)

MG 3.29 3.29 (1.00) 12.3 (0.27) 0.035 0.034 (1.03) 0.040 (0.87)

CG 3.56 3.86 (0.92) 5.50 (0.65) 0.042 0.033 (1.27) 0.044 (0.95)

Table 6. Spreads of relative position and block time from different program executions

(on IBM SP2, in milliseconds). The quality factors (see text) are enclosed in parenthesis.

4.3 Trace File Size

Experiments have also been performed on trace file sizes.  Figure 12 compares the variation of

trace file size when SP and BT are executed with a problem size of 12×12×12.  It is not surprising

that the size of event trace files increases linearly as the problem size goes larger, while the size

of statistical files remains constant. Based on this data, we can easily project that for full-scale

executions (with problem size 162×162×162 for 200-400 iterations) it will be very difficult to use

event tracing to obtain performance data.  More experiments on various parallel programs (such

as other NAS Parallel Benchmarks) are performed and similar results are obtained since the pro-

posed methodology is designed to produce a small fixed length trace file.

As can be seen from the next section, the use of fixed length formulae in the statistical tracing en-

ables us to capture more than 90% of the execution sequences, and with the increase of formula

size this percentage also increases, yielding always predictable trace file size. For those truly

random execution sequences, multiple or variable-length formulae may be used although the size

of the resulted trace file may increase. However, since random execution sequences usually are

very small percentage (less than a few percent) of the whole program execution, the change of the

trace file size is expected to be nominal (less than a few percent of the increase in a real event

trace file).
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Figure 12.  Trace file size comparison

In summary, the space-time view derived from the statistical data (stat-trace) gives a reasonable

representation of the overall trace picture with critical points accurately demonstrated (important

for performance analysis). The use of stat-tracing eliminates the need of trace flushing in the mid-

dle of program execution and,

thus, produces trace file with less

distortion and predictable size.

When problem size gets very

large, event trace becomes very

large and statistical trace wins.

4.4 Ability to Capture Applica-

tion Characteristics

Perhaps many readers are won-

dering how effective these four

formulae were in capturing se-

quences associated with parallel

applications. Figure 13 puts the

applications tested along two

axes.  The y-axis, labeled ÒNo. of

Individual Send/Recv Con-

structsÓ, measures the (static)

complexity of the source code.

The x-axis, labeled ÒNo. of mes-

sages SentÓ, measures the
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Figure 13.  Characteristics of applications tested
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(dynamic) execution complexity.  It suffices to say that most programs consist of hundreds of

individual send/receive constructs sending tens of thousands of messages during execution.  These

represent fifteen PVM and MPI programs executed on 8 to 64 nodes on the Intel Paragon, IBM

SP2, as well as a network of workstations (on various data sizes).  Again due to length considera-

tions, only results related to message sending and receiving are reported.  The nature of branch

sequences and loop iteration counts are much simpler and will be reported in a future paper.
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Figure 14.  Ability of formulae to capture message tags used in 15 applications

The ability of various formulae to capture message tags and sender/receiver used are shown in

Figure 14 and Figure 15 respectively.  There are four charts in each figure; the top two represent

static counts Ñ showing percentages of constructs in the source code learnt whereas the bottom
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two represent dynamic counts Ñ showing percentages of messages actually sent during execu-

tion.  The pie charts on the right represent summaries of the detailed data displayed on the left.
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Figure 15.  Ability of formulae to capture senders/receivers used in 15 applications

A number of observations can be made.  First, the formulae capture all message tags in 11 test

cases and all sender/receivers in 13 of the 15 test cases6.  Second, the ÒIDÓ formula accounts for

most cases: in other words, most programmers use a constant in their code for message tag and

                                                
6 The reader should note that the percentage of sequences learnt depends on the length of formulae.  The data pre-

sented here represent formulae of a maximum sequence length of 18.  Longer sequences can be learnt by allocating
more memory for monitoring at run-time.
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sender/receiver. Finally the reconstruc-

tion algorithm can actually obtain some

of the numbers in the sequences up to

the point where the formula failed.

Some preliminary experiments were car-

ried out to study the effect of formula

length. Figure 16 shows the perform-

ance of the formulae averaged over all

the applications.  It can be seen that as

expected, allocating more memory in-

deed, captures longer sequences and

thus allows more sequences to be learnt.

The designed simple formulae can learn

more than 90% of the patterns with a

given formula length. In principle the

failed percentage of patterns (e.g. from

random sequences) can be eliminated by starting a new learning cycle, i.e. use of multiple formu-

lae for a given pattern, or by dynamically increasing the formula length. The increase of trace file

size is expected to be nominal and should be a few percentage of the increase of a real event trace

file.

5. Conclusions and Future Work

In summary, an innovative approach has been proposed for performance instrumentation, moni-

toring, trace data representation, and execution reconstruction.  This approach is based on the

assumptions that program behavior is, in general, not random and that critical control flow infor-

mation (such as branch sequences, loop bounds, and message tags/senders/ receivers named in

communication calls) can be represented using repeating sequences.  Furthermore, the length of

these sequences is short (on the order of the number of nodes participating in the computation)

and can be captured and regenerated using simple formulae.  This approach requires a completely

new set of instrumentation to be inserted into the application before compilation and a new set of

tools for reconstructing execution history.

This methodology has been tested with fifteen applications, most of which consist of the NAS

Parallel Benchmarks.  There are four major results:

1. The data files thus obtained are, indeed, small, bounded and predictable before program

execution.
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Figure 16. Effect of formula length on percentages

of message tags and senders/receivers learnt
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2. The quality of the space-time views generated from these statistical data is excellent.

3. Experimental results show that the formulae proposed were able to capture 95% of the se-

quences involving message sending and receiving (the most complicated among the six cate-

gories mentioned in section 4.4).  This corresponds to 100% of all the sequences associated

with 11 of the 15 applications.

4. The performance of the formulae can be incrementally improved by allocating more mem-

ory at run-time to learn longer sequences.

By the use of  variable-length formulae or multiple formulae, execution sequences can be learnt

100%. However, the impact on the trace file size needs further investigation. More experiments

are needed to study the intrusion of the learning module and extra instrumentation on control

flows, which may pinpoint to future improvements of our implementation.  In particular, work

still needs to be performed in two major areas to fully evaluate the applicability of this approach

for actual systems:

Dealing with unknowns Ñ Sequences that are either very long or truly non-repeating (e.g. as a

result of non-determinism) cannot be learned. Even though experimental results suggest that these

comprise less than 5% of the sequences associated with the programs we tested, they pose po-

tential problems for event trace reconstruction.  Message lines cannot be drawn on the space-time

diagram when sequences associated message transmission cannot be reconstructed. Failure to re-

construct sequences associated with control-flow is much more problematic; the ÒremedyÓ de-

pends on the type, past behavior and the context in the particular control-flow construct occur.

In some cases, these potentially problematic constructs can be identified at instrumentation time

and the user can be alerted to provide alternatives.  Otherwise, the monitor can decide to fall-back

on event-tracing for this small percentage of construct, still resulting in a much smaller trace file

than a Òpure event traceÓ.

Characterizing and reducing run-time overhead Ñ Although the most intrusive element for event

tracing (namely the need to flush trace records to disk) has been eliminated, more constructs are

instrumented and the cost of executing complex learning modules could become expensive.  Nev-

ertheless, with the current formulations and test cases, this mode of monitoring exerts less over-

head than event tracing.
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